Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates.

Identifieur interne : 000348 ( Main/Exploration ); précédent : 000347; suivant : 000349

Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates.

Auteurs : Jack D. Stopa [États-Unis] ; Katherine M. Baker [États-Unis] ; Steven P. Grover [États-Unis] ; Robert Flaumenhaft [États-Unis] ; Bruce Furie [États-Unis]

Source :

RBID : pubmed:28364042

Descripteurs français

English descriptors

Abstract

Thiol isomerases such as protein-disulfide isomerase (PDI) direct disulfide rearrangements required for proper folding of nascent proteins synthesized in the endoplasmic reticulum. Identifying PDI substrates is challenging because PDI catalyzes conformational changes that cannot be easily monitored (e.g. compared with proteolytic cleavage or amino acid phosphorylation); PDI has multiple substrates; and it can catalyze either oxidation, reduction, or isomerization of substrates. Kinetic-based substrate trapping wherein the active site motif CGHC is modified to CGHA to stabilize a PDI-substrate intermediate is effective in identifying some substrates. A limitation of this approach, however, is that it captures only substrates that are reduced by PDI, whereas many substrates are oxidized by PDI. By manipulating the highly conserved -GH- residues in the CGHC active site of PDI, we created PDI variants with a slowed reaction rate toward substrates. The prolonged intermediate state allowed us to identify protein substrates that have biased affinities for either oxidation or reduction by PDI. Because extracellular PDI is critical for thrombus formation but its extracellular substrates are not known, we evaluated the ability of these bidirectional trapping PDI variants to trap proteins released from platelets and on the platelet surface. Trapped proteins were identified by mass spectroscopy. Of the trapped substrate proteins identified by mass spectroscopy, five proteins, cathepsin G, glutaredoxin-1, thioredoxin, GP1b, and fibrinogen, showed a bias for oxidation, whereas annexin V, heparanase, ERp57, kallekrein-14, serpin B6, tetranectin, and collagen VI showed a bias for reduction. These bidirectional trapping variants will enable more comprehensive identification of thiol isomerase substrates and better elucidation of their cellular functions.

DOI: 10.1074/jbc.M116.771832
PubMed: 28364042
PubMed Central: PMC5454092


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates.</title>
<author>
<name sortKey="Stopa, Jack D" sort="Stopa, Jack D" uniqKey="Stopa J" first="Jack D" last="Stopa">Jack D. Stopa</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Baker, Katherine M" sort="Baker, Katherine M" uniqKey="Baker K" first="Katherine M" last="Baker">Katherine M. Baker</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grover, Steven P" sort="Grover, Steven P" uniqKey="Grover S" first="Steven P" last="Grover">Steven P. Grover</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Flaumenhaft, Robert" sort="Flaumenhaft, Robert" uniqKey="Flaumenhaft R" first="Robert" last="Flaumenhaft">Robert Flaumenhaft</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Furie, Bruce" sort="Furie, Bruce" uniqKey="Furie B" first="Bruce" last="Furie">Bruce Furie</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 bfurie@bidmc.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28364042</idno>
<idno type="pmid">28364042</idno>
<idno type="doi">10.1074/jbc.M116.771832</idno>
<idno type="pmc">PMC5454092</idno>
<idno type="wicri:Area/Main/Corpus">000356</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000356</idno>
<idno type="wicri:Area/Main/Curation">000356</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000356</idno>
<idno type="wicri:Area/Main/Exploration">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates.</title>
<author>
<name sortKey="Stopa, Jack D" sort="Stopa, Jack D" uniqKey="Stopa J" first="Jack D" last="Stopa">Jack D. Stopa</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Baker, Katherine M" sort="Baker, Katherine M" uniqKey="Baker K" first="Katherine M" last="Baker">Katherine M. Baker</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grover, Steven P" sort="Grover, Steven P" uniqKey="Grover S" first="Steven P" last="Grover">Steven P. Grover</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Flaumenhaft, Robert" sort="Flaumenhaft, Robert" uniqKey="Flaumenhaft R" first="Robert" last="Flaumenhaft">Robert Flaumenhaft</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Furie, Bruce" sort="Furie, Bruce" uniqKey="Furie B" first="Bruce" last="Furie">Bruce Furie</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 bfurie@bidmc.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blood Platelets (enzymology)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Protein Disulfide-Isomerases (chemistry)</term>
<term>Protein Disulfide-Isomerases (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Plaquettes (enzymologie)</term>
<term>Protein Disulfide-Isomerases (composition chimique)</term>
<term>Protein Disulfide-Isomerases (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein Disulfide-Isomerases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein Disulfide-Isomerases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plaquettes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Blood Platelets</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Disulfide-Isomerases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein Disulfide-Isomerases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Domaine catalytique</term>
<term>Humains</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thiol isomerases such as protein-disulfide isomerase (PDI) direct disulfide rearrangements required for proper folding of nascent proteins synthesized in the endoplasmic reticulum. Identifying PDI substrates is challenging because PDI catalyzes conformational changes that cannot be easily monitored (
<i>e.g.</i>
compared with proteolytic cleavage or amino acid phosphorylation); PDI has multiple substrates; and it can catalyze either oxidation, reduction, or isomerization of substrates. Kinetic-based substrate trapping wherein the active site motif CGHC is modified to CGHA to stabilize a PDI-substrate intermediate is effective in identifying some substrates. A limitation of this approach, however, is that it captures only substrates that are reduced by PDI, whereas many substrates are oxidized by PDI. By manipulating the highly conserved -GH- residues in the CGHC active site of PDI, we created PDI variants with a slowed reaction rate toward substrates. The prolonged intermediate state allowed us to identify protein substrates that have biased affinities for either oxidation or reduction by PDI. Because extracellular PDI is critical for thrombus formation but its extracellular substrates are not known, we evaluated the ability of these bidirectional trapping PDI variants to trap proteins released from platelets and on the platelet surface. Trapped proteins were identified by mass spectroscopy. Of the trapped substrate proteins identified by mass spectroscopy, five proteins, cathepsin G, glutaredoxin-1, thioredoxin, GP1b, and fibrinogen, showed a bias for oxidation, whereas annexin V, heparanase, ERp57, kallekrein-14, serpin B6, tetranectin, and collagen VI showed a bias for reduction. These bidirectional trapping variants will enable more comprehensive identification of thiol isomerase substrates and better elucidation of their cellular functions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28364042</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>9063-9074</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M116.771832</ELocationID>
<Abstract>
<AbstractText>Thiol isomerases such as protein-disulfide isomerase (PDI) direct disulfide rearrangements required for proper folding of nascent proteins synthesized in the endoplasmic reticulum. Identifying PDI substrates is challenging because PDI catalyzes conformational changes that cannot be easily monitored (
<i>e.g.</i>
compared with proteolytic cleavage or amino acid phosphorylation); PDI has multiple substrates; and it can catalyze either oxidation, reduction, or isomerization of substrates. Kinetic-based substrate trapping wherein the active site motif CGHC is modified to CGHA to stabilize a PDI-substrate intermediate is effective in identifying some substrates. A limitation of this approach, however, is that it captures only substrates that are reduced by PDI, whereas many substrates are oxidized by PDI. By manipulating the highly conserved -GH- residues in the CGHC active site of PDI, we created PDI variants with a slowed reaction rate toward substrates. The prolonged intermediate state allowed us to identify protein substrates that have biased affinities for either oxidation or reduction by PDI. Because extracellular PDI is critical for thrombus formation but its extracellular substrates are not known, we evaluated the ability of these bidirectional trapping PDI variants to trap proteins released from platelets and on the platelet surface. Trapped proteins were identified by mass spectroscopy. Of the trapped substrate proteins identified by mass spectroscopy, five proteins, cathepsin G, glutaredoxin-1, thioredoxin, GP1b, and fibrinogen, showed a bias for oxidation, whereas annexin V, heparanase, ERp57, kallekrein-14, serpin B6, tetranectin, and collagen VI showed a bias for reduction. These bidirectional trapping variants will enable more comprehensive identification of thiol isomerase substrates and better elucidation of their cellular functions.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stopa</LastName>
<ForeName>Jack D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Katherine M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grover</LastName>
<ForeName>Steven P</ForeName>
<Initials>SP</Initials>
<AffiliationInfo>
<Affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flaumenhaft</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furie</LastName>
<ForeName>Bruce</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 bfurie@bidmc.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL136394</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 HL135775</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007917</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 HL112302</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 5.3.4.1</RegistryNumber>
<NameOfSubstance UI="D019704">Protein Disulfide-Isomerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001792" MajorTopicYN="N">Blood Platelets</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019704" MajorTopicYN="N">Protein Disulfide-Isomerases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">disulfide</Keyword>
<Keyword MajorTopicYN="Y">oxidase</Keyword>
<Keyword MajorTopicYN="Y">platelet</Keyword>
<Keyword MajorTopicYN="Y">protein disulfide isomerase</Keyword>
<Keyword MajorTopicYN="Y">protein-protein interaction</Keyword>
<Keyword MajorTopicYN="Y">reductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28364042</ArticleId>
<ArticleId IdType="pii">M116.771832</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M116.771832</ArticleId>
<ArticleId IdType="pmc">PMC5454092</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1998 Feb 16;17(4):927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9463371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Jun 1;1699(1-2):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 20;8:14151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28218242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1997 Apr 1;7(4):239-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9094311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2002 Feb;3(2):136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 10;275(10):6819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10702240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1999 Apr 1;339 ( Pt 1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10085220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1981 Mar;89(3):889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7287643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 4;272(14):8845-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9082998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2005 Feb 15;105(4):1500-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jan;6(1):28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Mar;118(3):1123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18292814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1998;290:26-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9534149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2014 Mar 28;114(7):1162-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24677236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2008 Feb;90(2):227-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18021746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Apr 8;36(14):4061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9099998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 28;33(25):7937-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7516709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Jun 18;8(13):R468-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9651676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 30;35(30):9761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8703948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jan 22;30(3):613-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1988050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Oct 20;233(4):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8411164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Sep 10;74(5):899-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8374956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Jul 1;43(1):62-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1992 May;1(5):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1304360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Dec 9;222(4628):1129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6648524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Feb 25;265(6):3183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2406248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 24;270(47):28006-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Thromb Hemost. 2015 Oct;41(7):765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26408919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Nov 19;35(46):14503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8931546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1993 Nov 1;3(11):790-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15335850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 5;267(13):9047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Oct 17;34(41):13642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7577954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Aug 13;35(32):10517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Feb 13;35(6):1972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Dec 26;34(51):16770-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Thromb Haemost. 2012 Feb;10(2):278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22168334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Boston</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Stopa, Jack D" sort="Stopa, Jack D" uniqKey="Stopa J" first="Jack D" last="Stopa">Jack D. Stopa</name>
</region>
<name sortKey="Baker, Katherine M" sort="Baker, Katherine M" uniqKey="Baker K" first="Katherine M" last="Baker">Katherine M. Baker</name>
<name sortKey="Flaumenhaft, Robert" sort="Flaumenhaft, Robert" uniqKey="Flaumenhaft R" first="Robert" last="Flaumenhaft">Robert Flaumenhaft</name>
<name sortKey="Furie, Bruce" sort="Furie, Bruce" uniqKey="Furie B" first="Bruce" last="Furie">Bruce Furie</name>
<name sortKey="Grover, Steven P" sort="Grover, Steven P" uniqKey="Grover S" first="Steven P" last="Grover">Steven P. Grover</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000348 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000348 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28364042
   |texte=   Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28364042" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020